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Elastic–plastic behaviour in materials loaded with
a spherical indenter
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Certain ceramic materials display an indentation response similar to that observed for

ductile metals when loaded with a spherical indenter. This unusual behaviour, for what are

nominally brittle materials, influences the mode of contact damage in applications such as

machining, wear, impact damage and hardness testing. The shape of the plastic zone

beneath the indenter is typically fully contained within the circle of contact on the specimen

surface and thus conventional hardness theories, such as the popular expanding cavity

model, provide an inadequate account of indentation response of the material. The present

work demonstrates, by experiment, finite element modelling and theoretical considerations,

that the indentation response is determined by the interaction between the evolving plastic

zone and the mechanical properties of the specimen material, in particular, the ratio of the

elastic modulus to the yield stress.
1. Introduction
Indentation tests involving hard, spherical indenters
have been the basis of hardness testing since the time
of Hertz in 1881 [1, 2]. Conventional indentation
hardness tests involve the measurement of the size of
a residual plastic impression in the specimen as a func-
tion of the indenter load. Theoretical approaches to
hardness can be generally categorised according to the
characteristics of indenter and the assumed response
of the specimen material. For sharp indenters, the
specimen is usually approximated by a rigid-plastic
material in which plasticity is assumed to be governed
by material flow velocity considerations. For blunt
indenters, the specimen responds in an elastic—plastic
manner and plastic flow is usually described in terms
of the elastic constraint offered by the surrounding
material. In this context, a Vickers diamond pyramid
indenter would be considered blunt.

The hardness of brittle materials is conveniently
measured using a diamond pyramid indenter since
a residual impression is readily obtained at relatively
low values of indenter load. The use of spherical in-
denters in hardness measurements is usually restricted
to tests involving ductile materials. However, there is
a class of nominally brittle materials which has been
demonstrated to exhibit yield in indentation tests with
spherical indenters at modest loads. For ceramic ma-
terials with a relatively large grain size and weak grain
boundaries, the characteristic Hertzian cone crack
normally associated with loading of a brittle material
with a spherical indenter is suppressed in favour of
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a region of sub-surface accumulated damage [3]. One
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such material is the mica-containing glass—ceramic
available under the trade name ‘‘Macor’’s. The inden-
tation response, as quantified by an indentation stress-
strain curve, is similar to that obtained for ductile
materials [4, 5]. However, the shape of the plastic
zone is considerably different to that observed in
metals. Rather than the commonly observed plastic
zone of approximate hemispherical shape which meets
the specimen surface outside the edge of the contact
circle, one finds a plastic zone which, at the specimen
surface, is contained within the edge of the contact
circle [4, 5]. The presence of sub-surface plastic defor-
mation and the unusual shape of the plastic zone
observed in these types of materials raises questions as
to the validity of established hardness theories in pre-
dicting their indentation response. Finite element
modelling, experimental results and theoretical con-
siderations are used to address these issues in the
present work.

2. Theoretical considerations
2.1. General response
It is generally observed in hardness testing that the
mean contact pressure beneath a Brinell (sphere) or
Vickers (diamond pyramid) indenter is larger than the
uniaxial compressive yield stress of the specimen ma-
terial. If yield occurs due to shear, then the mean
contact pressure required for bulk yield in an indenta-
tion test is higher than that required for a uniaxial
compressive test because of the confining pressure
ngineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA

generated by the surrounding elastically strained
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material in the indentation stress field. The ratio be-
tween the indentation mean contact pressure and the
uniaxial compressive yield stress is called the con-
straint factor and is given the symbol C. For ductile
metals, a value of C B3 is generally considered to be
appropriate [6].

Valuable information about the elastic and plastic
properties of a material can be obtained with the use
of a spherical indenter when the indentation stress,
defined as the mean contact pressure, p

.
, is plotted

against the indentation strain, equal to the contact
area radius, a, divided by the indenter radius, R [6]. If
the radius of the indenter is large in comparison to the
radius of the circle of contact with the specimen, then
the indenter may be considered ‘‘blunt’’ and an
elastic—plastic response for the specimen material as-
sumed. The indentation stress—strain response of such
a material can be generally divided into three regimes
[7]:

1. p
.
(B½; fully elastic response where ½ is the

uniaxial yield stress of the specimen material.
2. ½B(p

.
(C½; plastic deformation occurs

beneath the surface but the plastic zone is
completely surrounded by elastically strained
material. C is the constraint factor whose value
depends upon the material and the indenter
geometry.

3. p
.
"C½; plastic zone continues to grow in size

such that the indentation contact area increases
at a rate which gives little or no increase in the
mean contact pressure for further increases in
indenter load.

In Region 1, during the initial application of load, the
response is elastic and can be predicted from the Hertz
relation [1, 8]:

p
.
"A

3E

4pkB
a

R
(1)

In Equation 1, k is a dimensionless constant given
by:

k"9/16 [(1!m2)#(1!m@2) E/E@] (2)

where m and m@ are Poisson’s ratio, and E and E@ are
Young’s modulus of the specimen and the indenter
respectively. Equation 1 assumes linear elasticity and
makes no allowance for yield within the specimen
material. For a fully elastic response, the principal
shear stress for indentation with a spherical indenter is
a maximum at B0.47 p

.
at a depth of B0.5 a beneath

the specimen surface directly beneath the indenter [6].
Following Tabor [6], either the Tresca or von-Mises
shear stress criteria, where plastic flow occurs at
s
.!9

B0.5 ½, may be employed to show that plastic
deformation in the specimen can be expected to first
occur when p

.
B½.

Theoretical treatment of events within Region 2 is
difficult because of the uncertainty regarding the size
and shape of the evolving elastic—plastic zone. How-
ever, for a condition of full plasticity, semi-empirical,
theoretical and finite element models which describe

experimentally observed phenomena have been given
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considerable attention in the literature [9—21]. Gener-
ally, these models variously describe the response of
the material in terms of slip lines [9], radial compres-
sions [11—14] and elastic displacements [15, 16]. For
sharp wedge or conical indenters, substantial upward
flow is usually observed and since elastic strains are
thus negligible compared to plastic strains, the speci-
men can be regarded as being rigid—plastic. A cutting
mechanism is involved and new surfaces are formed
beneath the indenter as the volume displaced by the
indenter is accommodated by the upward flow of
plastically deformed material. The constraint factor
C in this case arises due to material flow and velocity
considerations [9]. With blunt indenters, the mode of
plastic deformation at a condition of full plasticity
appears to be a result of compression rather than of
cutting and the displaced volume is assumed to be
taken up entirely by elastic strains within the specimen
material [12, 13].

2.2. Expanding cavity model
Samuels and Mulhearn [12] and Mulhearn [13] ob-
served that the deformation beneath a blunt wedge or
conical indenter appeared to involve a radial compres-
sion mode of deformation rather than the cutting
mode observed for sharp indenters. Their observa-
tions were given further attention by Marsh [11] who
suggested that the deformation could be modelled
using a previous analysis of Hill [10] which was con-
cerned with the expansion of a spherical cavity in an
elastic—plastic solid. The most widely accepted treat-
ment is that of Johnson [14, 7] who considered the
expansion of an incompressible hemispherical core of
material subjected to an internal pressure. By specify-
ing the volume expansion of the material at the core
boundary to match that of the volume of material
displaced by a conical indenter for an increment of
indenter penetration into the specimen material, and
by choosing the radius of the core, a

#
, to be equal to

the radius of the circle of contact, a, and equating the
hydrostatic stress within the core to the radial stress at
the core boundary, Johnson was able to express the
mean contact pressure p

.
as a function of the com-

bined parameter E/½ tanb where b is the angle of
inclination of a conical indenter to the specimen sur-
face as shown in Fig. 1. According to Johnson [14],
the mean contact pressure is given by:

p
.
½

"

2

3 C1#ln A
(E/½ ) tan b#4(1!2m)

6(1!m2) BD#
2

3
(3)

Equation 3 applies to geometrically similar indenta-
tions, such as with a conical indenter, where the radius
of the plastic zone increases at the same rate as that of
the core. For the case of a spherical indenter, Johnson
[7] suggests that tanb in Equation 3 can be replaced
with a/R for small values of b. However, such a pro-
cedure appears to invalidate the assumed condition of
geometrical similarity. It should be noted that the
expanding cavity model, as exemplified by Equation 3,
invokes an elastic constraint rather than the flow

constraint associated with the slip-line theory [9]. The



Figure 1 Expanding cavity model schematic. The contacting sur-
face of the indenter is encased by a hydrostatic ‘‘core’’ of radius
a
#

which is in turn surrounded by a hemispherical plastic zone of
radius c. An increment of penetration dh of the indenter, results in
an expansion of the core da and the volume displaced by the
indenter is accommodated by radial movement of particles du(r) at
the core boundary. This in turn causes the plastic zone to increase in
radius by an amount dc.

model assumes that volume displaced by the indenter
is ultimately taken up by elastic strains in the bulk of
the specimen and there is hence no need for upward
flow. The expanding cavity model is given some atten-
tion in the present work because of its apparent endur-
ing popularity. It will be shown later that this model
should not be used beyond the scope of the restric-
tions imposed by its boundary conditions.

3. Experimental procedure
The elastic modulus E and the yield stress ½ are two
convenient parameters for characterizing the mechan-
ical properties of an ideal elastic—plastic solid, parti-
cularly in an indentation test where the elastic and
plastic properties of the specimen material are of con-
siderable interest. In the present work, two materials
have been selected for experimental study; the first, the
mica-containing glass—ceramic ‘‘Macor’’ referred to
previously, with E/½B85; and second, a specimen of
mild steel, E/½B550.

The choice of a mica-containing glass—ceramic
for study deserves comment. Mica-containing glass—
ceramics are known for their easy machinability and
yet have a respectable long-crack toughness [22]. Re-
cent studies have shown that the nature of the damage
experienced by these materials in Hertzian indenta-
tion experiments is influenced by their microstructure
[4, 5]. The microstructure consists of mica platelets
embedded in a glass matrix as shown in Fig. 2. If the
mica platelets are larger than 2—3 lm in diameter, the
indentation response is one of accumulated sub-
surface damage. Yielding in this material appears to
be a result of shear-driven sliding of the mica-platelets
within the glass matrix. Since the mica platelets are
precipitated from solid solution during the heat treat-
ment, the material is fully dense and compaction un-
der load due to porosity is excluded. This material is of
particular interest in the present work, not only be-
cause of its unusual indentation response, but because
it represents a class of materials with a relatively low

value for E/½.
Figure 2 Electron micrograph showing shear driven failure at the
mica-glass boundary. The photograph was taken at approximately
position ‘‘X’’ in Fig. 3. Note that the orientation of the shear faults
are at B90° to each other and lie in a direction given by the
Hertzian shear stress trajectories as shown in Fig. 9.

Figure 3 Bonded-interface experiment results for glass—ceramic
specimen. Indenter load P"1000 N, radius of indenter
R"3.18 mm corresponding to a/R"0.13. (a) shows residual im-
pression in the surface, (b) shows a section through the thickness of
the specimen beneath the indenter. Note that the damage zone is
contained within the contact circle on the specimen surface.

Indentation tests on steel with a spherical indenter
have formed the basis of the well-known Brinell test
since 1901 [23]. In the present work, a specimen of
mild steel has been selected for testing alongside the
glass—ceramic material described above. The relatively
high value for E/½ for this material, together with an
assumed low strain hardening characteristic, makes it
suitable for such comparative testing.

Two features of the indentation process are suitable
for analysis (i) the shape of the plastic zone, and (ii)
the indentation stress—strain response. The shape of
the plastic zone is conveniently established by the
bonded-interface, or split specimen technique [24, 3].
Fig. 3 (a and b) shows the top surface and section
views obtained using the procedure for a single inden-

ter load for the glass—ceramic. Similar views are shown
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Figure 4 Bonded-interface experiment results for mild steel speci-
men. Indenter load P"1000 N, radius of indenter a"3.18 mm
corresponding to a/R"0.18. (a) Shows residual impression in the
surface, (b) shows a section through the thickness of the specimen
beneath the indenter. Note that the damage zone extends beyond
the contact circle.

in Fig. 4 (a and b) for the mild steel specimen for the
same load and indenter radius. The indentation
stress—strain response is obtained by measuring the
radius of the residual impressions left in polished,
gold-coated specimens for a range of indenter loads
and sizes. Although elastic recovery causes the depth,
or profile, of the residual impression to be different to
that when fully loaded, the radius of the impression
remains virtually unchanged [14] and hence may be
used to calculate the indentation stress and indenta-
tion strain for the loaded condition. Fig. 5 (a and b)
shows the experimentally determined indentation
stress—strain response for both the glass ceramic and
the mild steel [25] materials along with finite element
and theoretical results to be discussed below. The
deviation from the Hertzian linear elastic response
should be especially noted. Also, the slope of the initial
linear portion of the curve depends upon the elastic
modulus for the specimen.

Both theoretical analysis and finite element model-
ling of the indentation process require an estimate of
the yield stress ½ for the specimen material. It is of
historical interest that the mean contact pressure re-
quired to initiate yield was the definition of hardness
originally proposed by Hertz in 1881 [1] and may be
used as an estimate of the yield stress ½. However, this
method of determining½ is impractical since the onset
of plasticity is a gradual process and occurs beneath
the specimen surface which is normally hidden from
view. Alternatively, the yield stress may be determined

from the point of deviation from linearity on the
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Figure 5 Indentation stress—strain response. (a) Glass—ceramic
specimen with E/½B85 showing theoretical, finite element and
experimental results. (b) Mild steel specimen with E/½B550. Hertz-
ian elastic response as computed using Equation 1 is indicated for
each material. (C) Indicates experimental measurements. (f) Indi-
cates the indentation stress and strain corresponding to the bonded-
interface specimens shown in Figs 3 and 4. (#) represents finite
element results and (r) at a/R"0.4 represents the hardness values
for each material measured with a Vickers diamond pyramid inden-
ter. The predictions of the expanding cavity model, Equation 3 with
tanb"a/R and the predictions of the empirical model, Equation
4 are also shown.

indentation stress—strain curve since the mean contact
pressure at this condition corresponds to B½. This
method also presents difficulties since the deviation
from linearity is usually very gradual and the point of
first deviation is difficult to estimate, especially for
metals, where yield occurs at comparatively low
values of indentation strain. However, for the
glass—ceramic material considered here, there is an
appreciable range of indentation strain within which
there is elastic behaviour. The presence of this linear

region facilitates an estimation of the point of first



TABLE I Mechanical properties of Macor and mild steel materials. Yield stress determined from experimental indentation stress—strain
relationship. Hardness measured from projected area of impressions using a Vickers diamond pyramid indenter

Young’s Poisson’s Yield stress E/½ Hardness Constraint
modulus ratio ½ (MPa) H (GPa) factor
E (MPa) m C (H/½ )

Macor 64 000 0.26 770 85 2.1 2.7

Mild Steel 210000 0.3 385 550 1.15 2.8
deviation from linearity. However, in practice, the
results of the present work indicate that plastic flow
takes place before there is a discernible deviation from
linearity. Estimations of yield stress using this method
are thus expected to be somewhat high. The yield
stress may also be obtained from the Tabor relation-
ship H"C½. For metals, C B3 has been shown to be
appropriate, but this value cannot be assumed to
apply for the glass—ceramic material considered
here. In consideration of all these factors, the yield
stress ½ for the glass—ceramic material determined
from the point of deviation from linearity on the
indentation stress—strain curve was considered to be
adequate for the present work. A similar procedure
was adopted by Swain and Hagan for soda—lime
glass [26]. For the mild steel specimen, the Tabor
relationship H"3½ is appropriate and the yield
stress was determined from a conventional hardness
measurement.

The hardness of each test specimen was measured
using a Vickers diamond pyramid indenter and cal-
culated using the projected area of contact. Tabor [6]
determined experimentally that for metals which work
harden, the indentation process itself corresponds to
a longitudinal strain eB8% and that also, eB0.2 a/R.
Thus, according to this analysis, indentation with
a Vickers indenter should correspond to a value of
a/R"0.4 for a spherical indenter. It may be expected
therefore that the mean contact pressure p

.
measured

at a/RB0.4 should then be equivalent to the hardness
value H. However, despite the apparent convenience,
it should be noted that this rule has not been demon-
strated to apply, particularly to the ceramic materials
considered here, thus our placing the measured
hardness values at a/R"0.4 in Fig. 5 is somewhat
arbitrary. The measured hardness for the mild steel
specimen was used to determine the yield stress ½ for
this material. Estimates for yield stress and hardness
are given in Table I for each test material along with
other mechanical properties used in the analyses.

4. Finite element analysis
Theoretical analysis of an elastic—plastic indentation
with a spherical indenter is difficult because of the
uncertainty regarding the shape of the evolving
plastic zone. However, the problem is suitable for
analysis using the finite element method where no
assumption about the shape of the zone need be
made beforehand. In the present work, non-linear
†† In the secant method, the elastic modulus is given by the slope of a str
curve rather than the local slope of the stress—strain curve at that poi

behaviour was included by specifying an elastic
perfectly plastic uniaxial stress—strain relationship
as part of the property set for the elements repres-
enting the specimen where it is assumed that
such a relationship is representative of that of the
actual specimen material. Results for a fully
linear elastic response were also calculated for
verification with the Hertz elastic solution. A special
feature of the present analysis is that, by the use
of special gap beam elements, the expanding area of
contact is accommodated automatically and no
knowledge of the radius of the contact circle is
required a priori. Elastic—plastic behaviour is
modelled here by treating the specimen material as
a non-linear elastic solid, hence, only the application
of load may be considered. The residual field
cannot be obtained directly by ‘‘unloading’’ but may
be estimated from the difference between the elas-
tic—plastic solution and the linear elastic solution for
the fully loaded configuration [7].

The finite element analysis presented here assumes
a perfectly rigid indenter in frictionless contact with
the flat surface of the specimen. The finite element
mesh used in the present work consisted of 1736 nodes
and 1538 axis-symmetric quadrilateral plate elements.
A section of the mesh near the contact is shown in
Fig. 6 showing some of the gap beam elements, at
points AC, used to simulate contact between the in-
denter and the specimen. A commercially available
software package [27] was used to undertake the
analysis. Elastic—plastic behaviour was accommod-
ated by a direct iterative procedure as outlined by
Zienkiewicz and Cheung [28]. In this approach, the
stiffness of each element in the model is adjusted, via
a secant method,ss so that the nominated failure
criterion, in this case the Tresca criterion, is satisfied
within a specified tolerance level. Load is applied
incrementally and it is assumed that the material
behaves linearly within each increment. The dimen-
sions of the indenter radius and the range of indenter
loads in the finite element analysis matched those used
in the experimental work.

Figs 7b and 8b show the shape of the evolving
plastic zone as determined from the finite element
analysis for the two material types. In these figures, the
distance scales have been normalised to the radius of
the circle of contact for the Hertzian elastic case at
P"1000 N for clarity. Results are shown for a range
of loads from 40—1000 N applied to a 3.18 mm radius
indenter. A single contour for each load step at
s /½"0.5 has been drawn. For the purpose of in-
aight line drawn between the origin and the point on the stress—strain
nt.

.!9
vestigating the dependence of the ratio E/½ of the
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Figure 6 Finite element model showing details of mesh grading
and boundary conditions. Implementation of gap beams in finite
element mesh is shown. Nodes at positions B and C are con-
strained to move the same amount in the vertical, or z, direction
so that contacting surfaces move together. Beams are maintained
vertical by constraining nodes at A and C to move the same amount
in the horizontal, or r, direction. Rigid indenter is modelled
by constraining all nodes along the surface of the indenter at A to
move the same amount in the vertical direction as the node at
position D.

specimen material, an additional finite element analy-
sis was carried out for E/½+550 with E+85 GPa
for comparison. The results, not shown, indicated
a plastic zone similar in shape to that obtained for the
case of E"210 000 MPa and E/½"550. Another
solution was generated for a value of E/½"200 and
the resulting shape of the plastic zone was intermedi-
ate between those shown in Figs 7b and 8b. The
contact pressure distribution for each test material is
shown in Figs 7a and 8a. The intersection of each of
the curves in these figures with the horizontal axes in
Fig. 7 (a and b) and Fig. 8 (a and b) indicates the
radius of the circle of contact for each load case. The
indentation stress and strain were also determined
from the finite element results and plotted along with
the experimental data in Fig. 5.

5. Comparisons
The predictions of various hardness theories are most
markedly characterized by the proposed shape of the
plastically deformed region. The expanding cavity
model requires a hemispherical plastic zone coincident
with the centre of contact at the specimen surface.
Indeed, such a shape, for metal specimens with spheri-
cal and conical or wedge type indenters, has been
widely reported in the literature [12, 13, 24] and is
demonstrated approximately in the present work in
Fig. 4. The finite element results shown in Fig. 7 (a and b)
and Fig. 8 (a and b) demonstrate the dependence of
the shape of the evolving plastic zone with respect to
the mechanical properties, in particular the ratio E/½,

of the specimen material. The shapes of the plastic
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Figure 7 Finite element results showing shape of evolving plastic
zone for glass-ceramic material with E/½B85. Results are shown
for indenter loads P"40, 100, 200, 400, 600 and 1000 N for
R"3.18 mm corresponding to indentation strains of a/R"0.035,
0.05, 0.07, 0.09, 0.10, 0.13. (a) Shows the contact pressure
distribution. The vertical axis is calibrated in terms of the mean
contact pressure p

.
"3.0 GPa for the case of P"1000 N.

(b) Shows the development of the plastic zone in terms of contours
of maximum shear stress at s

.!9
/½"0.5. Distances are expressed in

terms of the contact radius a"0.326 mm for the elastic case of
P"1000 N. The heavy black line at the top of the lower figure
indicates the radius of the circle of contact (from the F.E. solution)
for P"1000 N.

zones indicated in Figs 7b and 8b are consistent with
those observed experimentally, as shown in Figs 3 and
4. In Fig. 7, it is shown that the shape of the plastic
zone, for the case of P"1000 N and R"3.18 mm,
predicted by the finite element analysis is similar to
that of the Hertzian elastic shear stress contour
corresponding to s

.!9
/½"0.5. In Fig. 8, it is shown

that the shape of the plastic zone given by the finite
element analysis approaches that required by the ex-
panding cavity model. These observations indicate
that the different type of response, ranging from a con-

tained to an uncontained plastic zone, depends on the



Figure 8 Finite element results showing shape of evolving plastic
zone for the mild steel material with E/½B550. Results are shown
for indenter loads P"40, 100, 200, 400, 600 and 1000 N for
R"3.18 mm corresponding to indentation strains of a/R"0.04,
0.06, 0.08, 0.11, 0.14, 0.18. (a) Shows the contact pressure distribu-
tion. The vertical axis is calibrated in terms of the mean contact
pressure p

.
"6.7 GPa for the case of P"1000 N. (b) Shows the

development of the plastic zone in terms of contours of maximum
shear stress at s

.!9
/½"0.5. Distances are expressed in terms of the

contact radius a"0.218 mm for the elastic case of P"1000 N.
Also shown is the elastic—plastic boundary as predicted by the
expanding cavity model with tanb"a/R, for the case of
P"1000 N. The heavy black line at the top of the lower figure
indicates the radius of the circle of contact (from the F.E. solution)
for P"1000 N.

ratio of E/½ rather than the absolute values of these
terms.u

The indentation stress—strain response provides
another comparative test for the different types of
analyses. Experimental results, the predictions of the
expanding cavity model, Equation 3, and the results of
the finite element analysis are shown for each material
in Fig. 5 (a and b). Also shown in Fig. 5 (a and b) is
° Here, the term ‘‘contained’’ applies to the plastic zone being predom
refers to a zone which meets the surface outside the circle of contact.

the linear elastic response from Equation 1. The results
of the finite element analysis follow the trends indicated
by the experimental results. The predictions of the
expanding cavity model also follow the trends in the
data but the correspondence is not particularly good.

6. Analysis
Detailed theoretical analysis of events within the spec-
imen material is difficult because of the variable ge-
ometry of the evolving plastic zone with increasing
indenter load. As load is applied to the indenter, the
principal stresses r

1
and r

3
within the specimen ma-

terial increase until eventually the flow criterion is met
and thus Dr

1
!r

3
D"½. An element of such material

is shown at (a) in Fig. 9. Due to the constraint offered
by the surrounding elastic continuum, an additional
stress r

R
arises which serves to maintain the flow

criterion as the load is increased. Plastic flow occurs
until the magnitude of r

R
is such that, with respect to

the total state of stress, the net vertical force is suffi-
cient to balance the applied load. The total state of
stress is given by the superposition of the elastic stress
field and the stresses r

R
induced by the plastic defor-

mation. Beyond the elastic—plastic boundary, the
stresses r

R
follow an inverse square relationship until

the stress field is substantially the same as the Hertz-
ian elastic case, as per Saint-Venant’s principle. As-
suming no reverse slip [7], the stresses r

R
remain

when the load is removed as the elastically strained
material attempts to resume it’s original configuration
but is prevented from doing so by the plastically
deformed material. The stresses r

R
are therefore resid-

ual stresses.
The indentation stress—strain curves determined by

experiment and finite element analysis show that there
is a decrease in the mean contact pressure, compared
to the fully elastic case, as plastic deformation occurs
beneath the indenter. For the case of a spherical in-
denter, a decrease in mean contact pressure, at a par-
ticular value of indenter load, corresponds to an
increase in the size of the contact area and penetration
depth. The observed increase in penetration depth
indicates an increased energy consumption compared
to the fully elastic case since the indenter load does
additional work. Neglecting any frictional dissipative
mechanisms, it is not immediately evident why there
should be more energy transferred from the loading
system into strain energy within the specimen material
after plastic flow has occurred. It is quite conceivable
that, due to the elastic constraint, plastic flow occurs
and the residual stress field established without any
increase in penetration depth as was thought by Shaw
and DeSalvo [15, 16]. It is only the experimental
evidence, in the form of a deviation from linearity on
the indentation stress—strain curve, that suggests
otherwise. The answer lies in the effect of plastic flow
on stress distribution beneath the indenter. In Fig. 9,
note that the direction of maximum shear stress for
the material at position (a) is approximately 45° to the
inantly enclosed by elastically strained material, and ‘‘uncontained’’

axis of symmetry and that r
R

acts in a direction
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Figure 9 Schematic of plastic deformation beneath spherical inden-
ter. Contours of maximum elastic shear stress are drawn in the
background. Element of material at (a) has the direction of max-
imum shear oriented at approximately 45° to the axis of symmetry.
Direction of maximum shear follows approximately that of the
Hertzian elastic stress field for low value of E/½. Element of material
at (b) undergoes plastic deformation such that the direction of
residual field supports the indenter load. Shaded areas indicate
plastic strains which are ultimately taken up by elastic strains
outside the plastic zone.

normal to the application of load. If it is assumed that
the sliding is irreversible, i.e., plastic deformation, then
the direction of r

R
at this position is such that no

contribution is made by r
R

in supporting the indenter
load. Rather, due to the plastic deformation at this
point, the compliance of the material is increased.
That is, the shaded area in Fig. 9 at (a) indicates
volume of material which is taken up by additional
downwards movement of the indenter. The displaced
volume is transferred, via plastic deformation, to elas-
tic strains in the specimen material outside the plastic
zone. For the material at position (b) in Fig. 9, similar
events occur but this time, the direction of maximum
shear is oriented approximately parallel to the direc-
tion of applied load. Thus, at this position, the local
compliance is increased due to plastic deformation,
but a significant component of the residual stress
r
R

tends to act in direction to support the indenter
load. These observations account for the shift in the
maximum of the contact pressure distribution from
the centre to the points near the edge of the circle of
contact, as shown in Fig. 7 (a and b), as plastic defor-
mation proceeds. Note that the shear faults visible in
the electron micrograph in Fig. 2, taken at position
X in Fig. 3, are oriented at B90° to each other
and the angle of the ‘‘fault line’’ is consistent with
that shown in Fig. 9. In Fig. 2, little or no shear fault-
ing is observed to occur at grain boundaries which are
not aligned with the direction of maximum shear

stress.
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What then determines the shape of the plastic zone?
For shear driven plasticity, the edge of the plastic zone
coincides with the shear stress contour whose magni-
tude just satisfies the chosen flow criterion. The pres-
ent work shows that the location of the edge of the
fully developed plastic zone depends upon the ratio
E/½. The change in character from a contained to an
uncontained plastic zone occurs due to the shift in the
balance of elastic strain from material directly beneath
the indenter outwards towards the edge of the circle of
contact. As the plastic zone evolves, material away
from the axis of symmetry is being called upon to take
an increasing level of shear. For materials with a low
value of E/½, a large proportion of this can be accom-
modated by elastic strain. However, for materials with
a high value of E/½, plastic flow is comparatively
more energetically favourable and thus occurs at
a lower value of indenter load. The plastic zone thus
takes on an elongated shape well before reaching the
specimen surface and the cumulative effect is for the
zone to grow ever outwards with increasing indenter
load. The proximity of the specimen surface also plays
a role as the material attempts to accommodate the
residual field and leads to the slight ‘‘return’’ in the
shape of the quasi-semi-circular plastic zone as shown
in Fig. 7b. It is thus concluded that the semi-circular
plastic zone shape associated with the expanding cav-
ity model and observed in specimens with a high value
for E/½ at high values of indentation strain arises due
to the nature of the shift in elastic strain energy from
material beneath, to that adjacent to the evolving
plastic zone. The rate of growth of the plastic zone,
with respect to increasing indenter load, affects its
subsequent shape, the effect being magnified by mater-
ials with a high value of E/½. The distribution of stress
around the periphery of the plastic zone becomes
more uniform as the gradients associated with the
elastic stress field are redistributed as a result of plastic
deformation. For both high and low ratios of E/½, the
volume displaced by the indenter is accommodated
eventually by elastic strains in the specimen material.
As the ratio E/½ increases, the distribution of elastic
strain outside the plastic zone assumes a semi-circular
shape consistent with that required by the expanding
cavity model.

The expanding cavity model, which provides quan-
titative information about the indentation stress—strain
response of the specimen material, depends upon an
assumed hemispherical plastic zone and is thus re-
stricted to materials with a relatively high value of
E/½. There has thus far been no attempt in the litera-
ture to account for the indentation stress—strain re-
sponse for materials with a low value of E/½ while at
the same time giving attention to the observed shapes
of the plastic zone in these types of material. The
indentation stress—strain responses shown in Fig. 5 (a
and b) indicate a dependence on the parameters E and
½. The slope of the initial linear portion of the curve is
of course directly proportional to the elastic modulus,
the point of deviation from linearity corresponds ap-
proximately to an indentation stress equal to the yield
stress, and the limiting value of the indentation pres-

sure corresponds approximately to the hardness



value. This information may be used to formulate
an empirical relationship between p

.
and a/R. Such

a relationship is given in Equation 4.

p
.
"(C!1)½A1!expCbA

E

½B
1@2

]C
a

R
!

4½pk

3E DDB#½ (4)

In Equation 4, C is the constraint factor, b is a con-
stant to be calibrated against experimental data, and
k is as defined in Equation 2. Equation 4 applies to the
non-linear portion of the indentation stress—strain
response, i.e., a/R'4½pk/3E and embodies the ob-
served indentation stress—strain behaviour of the test
specimens, as shown in Fig. 5 calculated for b"2, but
contains no information about the nature of the
elastic—plastic deformation process. Such information
is available from the finite element and experimental
results. The usefulness of Equation 4 lies in the fact
that it may be used to predict the indentation
stress—strain response for a material over a wide range
of indentation strains and for materials with a wide
range of elastic and elastic—plastic properties.

7. Discussion
The expanding cavity model accounts for the
variation of p

.
with the indenter wedge angle by

a consideration of the expansion of material at the
core boundary with respect to the volume of material
displaced by the indenter. For the case of a spherical
indenter, Johnson [14, 7] suggests that tanb in Equa-
tion 3 can be replaced with a/R for small values of
b but this violates the required condition of geometri-
cal similarity. The geometry of the mode of deforma-
tion and the resulting relationship between p

.
and

E/½ tanb given by Equation 3 depends upon the
choice of the core radius since it is this which governs
the volumetric compatibility between the movement
of particles on the core boundary and the material
displaced by the indenter. As noted previously, in the
case of a spherical indenter, yielding first occurs at
some small distance beneath the surface of the speci-
men at some finite value of contact radius. Swain and
Hagan [26] suggested that tanb in Equation 3 should
be replaced by (a!a*) /R, where a* is the radius of
the circle of contact at the onset of yield. However, this
violates the volumetric compatibility implied in
Equation 3. There appears to be some confusion in
the literature concerning the range of applicability of
the expanding cavity model. As presented by Johnson,
the model is unable to predict a constant value for the
constraint factor C since Equation 3 implies a mono-
tonically increasing value of p

.
with increasing a/R. At

the same time, the model assumes that the plastic zone
is fully developed and meets the specimen surface
outside the circle of contact whereupon one might
expect unconstrained plastic deformation. The appar-
ent anomaly is explained by recognising that the
expanding cavity model applies to relatively blunt
indenters, i.e., wedges or cones with an included angle

greater than B120°, or spherical indenters. The angle
of the indenter is such that the flow constraint is not
satisfied. The downwards movement of such an inden-
ter causes a compression rather than the cutting ac-
tion associated with a sharp indenter and no new
surfaces are formed. The finite element and experi-
mental results of the present work shows that the
radial mode of deformation commonly observed
[12, 13, 19, 7] in metal specimens loaded with spheri-
cal indenters occurs only at relatively high values of
indentation strain. Both Johnson [7] and Chiang et al.
[19] refer to earlier work by Samuels and Mulhearn
[12] and Mulhearn [13], who observed that radial
displacements within the specimen material, centred
on the point of first contact, are similar for both
conical and spherical indenters. It should be noted
that these observations refer to work performed at
relatively high values of indentation strain (a/R"0.51
in reference [12]) and the later work by Mulhearn
[13] deals exclusively with conical and wedge type
indenters, albeit blunt, where full plasticity occurs at
the point of first contact with the specimen. Under
these conditions, the hemispherical plastic zone re-
quired by the expanding cavity model appears to be
entirely appropriate. Marsh [11] asserts that the
radial mode of compression associated with the ex-
panding cavity model is appropriate for materials with
a low value for E/½, e.g., glasses, since it provides
a relation between p

.
and a/R which is consistent with

experimental indentation stress—strain data. However,
such a correspondence is fortuitous since, as can be
seen in the present work, the shape of the plastic zone
in these types of materials is inconsistent with that
required by the model.

The present work demonstrates the importance of
the ratio E/½ of the specimen material in predicting
the indentation response of materials loaded with
a spherical indenter. This is in contrast to Hardy et al.
[17] who found that the shape of the plastic zone
determined by finite element analysis was independent
of E/½, but these authors did not indicate the range of
E/½ considered in their work. The mica-containing
glass—ceramic material was chosen especially for study
in the present work because it represents a material
with a low value for E/½ relative to other materials
which exhibit plastic deformation in indentation tests
with spherical indenters.

Finally, it is interesting to note that the hard-
ness number measured for the mica-containing
glass—ceramic in the present work is slightly lower
than the limiting value of the indentation pressure
obtained from the stress—strain curve. A similar
observation was made by Swain and Hagan [26]
for soda-lime glass. The difference is not large how-
ever, and in general, as reported by Chiang et al.
[19, 20], the indentation response, in the fully plastic
region, may be regarded as being independent of the
shape of the indenter at large values of indentation
strain.

8. Conclusions
The present work shows that plastic flow beneath the

spherical indenter leads to an apparent shift in elastic
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strain from material beneath the indenter to that
nearer to the surface, away from the centre of contact.
The finite element results, supported by experimental
evidence, demonstrate that there is a transition in
behaviour from contained to uncontained plastic
deformation with increasing value of E/½ for the
specimen material. The shape of the plastic zone
appears to depend on the rate of growth of the zone
with respect to the indenter load. The present work
brings into question the appropriateness of using the-
oretical models without a full consideration of the
character of the indentation process with respect to
the elastic—plastic properties of the specimen material,
and also raises questions as to the fundamental
nature of the concept of indentation hardness.
In view of the difficulties associated with the
evolving shape of the plastic zone in determining
the indentation stress—strain relationship from first
principles, an empirical relationship has been
proposed which may be used to predict the indenta-
tion stress—strain response over a wide range
of indentation strains and for a wide range of material
types.

The present work has particular relevance to the
use of ceramic materials in structural applications.
Optimization of the mechanical properties for a
particular application must be done at the microstruc-
tural scale where inelastic behaviour takes place.
Any microstructural variation which significantly
affects the macroscopic properties of the material,
in particular, the ratio E/½, influences the indenta-
tion response. For example, the geometry, or shape,
of the plastic zone during impact or contact
loading may lead to mechanical failure of the
specimen, or alternately, may confer a degree of
toughening similar to that obtained in the shot-peen-
ing of metals.
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